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Abstract: Dynamics of the Sun is quite complex. Sunspot number is an important index to understand the solar dynamo 

mechanism that governs the solar magnetic cycle. This paper is an attempt to forecast Sunspots number by finding an 

appropriate time series model. For the purpose, Sunspots datasets from 1749 to 2010 were used. Also, 23 minimum to 

minimum (m-m) and 24 maximum to minimum (M-m) Sunspots cycles were investigated. The results show that 

Autoregressive Moving Average (ARMA) time series models fit slightly with the Sunspots number, whereas, Autoregressive 

Integrated Moving Average (ARIMA) models fit well. They have corrected predictions of the future trend of the Sunspots 

number within the sample period of study. The results obtained showed that the probability of the AIC corrected model was 

found better fitted. The problem of over parameterization exited in the model used, but under parameterization was found to 

minimal. 
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1. Introduction and Literature Review 

Numerous models have been proposed to investigate and forecast the sunspot number by researchers. Among the most 

popular models are: Final Prediction Error (FPF) paradigm, Schwarz-Ressanen Criteria N (SIC), Bayesian Estimation 

Criteria N (BEC), Hannan-Cain Criterian, Akaike Information Criteria N (AIC), etc. The more recent model determination 

criterion is the Akaike Information Corrected Criteria N (AICC) that was created by [10]. Time arrangement displaying is 

one of the well-known strategies utilized by numerous researchers for estimation [14, 16]. The proposed ARIMA model 

was used for anticipating climatic conditions and warming relationship. Models could accomplish preferable exactness of 

load estimate over the conventional ARIMA display [13, 17] proposed an altered ARIMA, which consolidated the 

administrator's estimation as the underlying anticipating with the temperature and load information in a multi-variable 

relapse process. The anticipating precision of the changed ARIMA was observed to be superior over conventional ARIMA 

model. In this study, the strategies of univariate time arrangement investigation are connected to month to month mean 

information of Sunspots keeping in mind the end goal to assemble models that can used to anticipate the following cyclicity. 

Time arrangement examination in this investigation has been done utilizing time arrangement programming [9, 11]. 

 

The rotation of photospheric outer layer of the Sun cause to appear the dark spots on the outer layer of the Sun called 

Sunspots [7, 8]. The quantity of Sunspots on the sun based circle is coordinated to be a degree of sun oriented movement. 

The yearly normal of sunspot regions has been noted beginning around 1700 [2, 15]. The Sunspot Number has been recorded 

reliably starting around 1755 onwards. Sunspots are the dark spots that appear on the photosphere because of the low 

temperatures, as compared to the other parts of surface. The thickness of the photosphere is about 400 km and its surface 

reveal greatest of the solar radiation. The internal and external layer of photosphere has 6,000 K and 4,200 K respectively. 

Temperature of the sunspots is about 4,600 K. The sunspot is the foremost solar activity; other activities of the sun are 

associated with sunspots. The average sunspot cycle is 11.1 years, the minimum and maximum cycles of sunspots are 9 and 

14 years respectively [3, 18]. 
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The sun oriented cycle depends on the progression of the movement of the sun, the sun based material discharge and the 

dimension of sunlight based radiations. The presence of sunlight based cycle relies upon the progressions of the numbers 

of sunspot, flares and in addition to other indicators. To each cycle the most extreme number of sunspots is called as the 

greatest and least sunspots numbers. The main sun powered cycle is viewed as beginning from 1755, however, the sunlight 

based cycles have been found first by Samuel Heinrich Schwabe [17, 20].  The present sunspot cycle is 24th cycle. 

 

The maximum sunspot number in cycle 24 is 90, however, it has enormous sunspots as well. Sun oriented greatest 

existed in May 2014.There were almost no sunspots in 2008 and 2009. The circumstance is exceptionally surprising for 

nearly a whole century. During 24 sunspot cycle, northern side of the equator has subsequent sunspots of dynamic areas 

with negative extremity field while southern half of the globe has driving sunspots with positive extremity. It is to be noted 

that each cycle has distinctive span. Normal length of cycles of sunspot is nearly 11-years. 

 

Every cycle has the number of sunspots, changing as of extreme towards least and rear to greatest once again. The details 

of corresponding years opposite to cycle 1 to cycle 23 are given as under. Sunspots Cycle-1 consist of  (11.3) years, cycle 

2 has ( 9) years, cycle 3 (9.3 )years, cycle 4 (13.7) years, cycle 5 (12.6) years, cycle 6 (12.4) years, cycle 7 (10.5) years, 

cycle 8 (9.8 )years, cycle 9 (12.4) years, cycle 10 (11.3) years, cycle 11 (11.8) years, cycle 12 (11.3) years, cycle 13 (11.9) 

years, cycle 14 (11.5 )years, cycle 15 (10) years, cycle 16 (10.1) years, cycle 17 (10.4 )years, cycle 18 (10.2 )years, cycle 

19 (10.5) years, cycle 20 (11.7) years, cycle 21 (10.3) years, cycle 22 (9.7) years, cycle 23 (11.7) years and Sunspots cycle-

24 is in continuation started by January 2008 and  ending in 2018 and cycle -24 can’t   analysis completely. 

 

Let us conclude this section by pinpointing the attractive cycles on the solar surface, similar to the sunspot cycles, each 

attractive cycle is equivalent to the two cycles of sunspots. As far as the base length is concerned, one sunspot cycle is 

approximately of 11-years, and then this implies that one attractive span of the cycle is 22-years. The peak of attractive 

cycle, number of sunspots found minimum and maximum that modify two times to each attractive cycle, amid the reversal 

of polarities, number of sunspots discovered least (Ali et al. 2018). 

 

2. Material and Methodology 

This section describes the procedures of establishing appropriate ARIMA model for making forecast. These procedures 

include: data plotting, data transformation, model selection, parameter estimation, validation tests and forecasting. In this 

paper, the analysis is carried out using Interactive Time Series Modeling (ITSM). ITSM is totally windows-based computer 

package for univariate and multivariate time series modeling and forecasting where variance of white noise is the number 

of observations, and is order of the autoregressive model [4, 9]. 

 

This data is then stratified according to the standard 11-years (approximate) solar cycles generating two other datasets. 

(i) Monthly mean minimum to minimum (m-m) Sunspot cycles datasets from February 1755 to April 2007 (Cycles: 1-23). 

(ii) Monthly mean maximum to minimum (M-m) Sunspot cycles datasets from August 1750 to October 2007 (Cycles: 1-

24). 

 

2.1 ARIMA Model 

 

AR model of order p-AR (p) 

An autoregressive model denotes present values of the time series in the form of combined one or more preceding values 

of the same series. It indicates one value dependent on its nearest preceding values. Suppose that if Yt {t = 1, 2, 3 ……. n} 

is the time series of AR model of order p lacking a constant term, then the expression can be written as: 

 

Yt =  ϕ1Yt−1 +  ϕ2Yt−2 + ⋯ + ϕpYt−p + et                                                                 … (2.1) 

 

Where e_t error is term and ϕ1, ϕ2,…,ϕp are autoregressive parameters to be assessed. 
 

Moving Average model of order q- MA (q) 

 

In moving average model on expresses the present values of the time series Yt in linear form of present and preceding 

values of the white noise series (et). The task of white noise series construction is done on the basis of the forecast errors 

or residuals when demand observation becomes available. The expression can be written for the moving average model of 

order q lacking a constant term as: 

 

Yt =  et −  θ1et−1 − θ2et−2 − ⋯ −  θqet−q                                                                   … (2.2) 

 

Where e_terror is term and θ1, θ2,…,θq are parameters to be estimated. 
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ARMA model of order p, q- ARMA (p, q) 

 

Autoregressive Moving Average model of order p and q is made by joining terms of AR of order p and MA of order q 

models. Autoregressive Moving Average model of order p and q is generally written as: 

 

𝑌𝑡 =  𝛿 +  𝜑1𝑌𝑡−1 +  𝜑2𝑌𝑡−2 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 +  et +  θ1et−1 +  θ2et−2 + ⋯

+ θqet−q                                                                                                          … . (2.3) 

 
The major drawback of ARMA model is that it assumes the time series data as stationary process. On the other hand, 

the real world data are not stationary in nature. The non-stationary time series data is transformed as stationary by 

differencing process. Generally, the first order differencing process of time series Yt turn out to be stationary. But, if ARMA 

time series is transformed as stationary by differencing of order d, it is identified as Integrated Autoregressive Moving 

Average process and represented by ARIMA (p, d, q). 

 

2.2 ACF and PACF 

 

Both functions the autocorrelation and partial autocorrelation are some kind of graphs that encompass correlations of 

different time lags. Both ACF and PACF can be used to examine the nature of the series, that whether that is stationary or 

not and also to classify the number of components in an ARMA model. The number of significant sharp edges in the ACF 

designates the number of MA terms in the model, while the number of significant edges in PACF shows the number of AR 

terms in the model. 

 

3. Result and Discussion 

The sample ACF and PACF shown in Figs. 1-15 suggest an appropriate ARMA model for the data. The horizontal lines 

on the graph display the bounds ±1.96 which are approximate 95% bounds for the autocorrelations of the white noise 

sequence [1,16]. ACF will represent a pure MA (q) model, and the PACF will represent a pure AR (p) model. The estimated 

models for forecasting the maximum demand of electricity with their corresponding AICC values are given in Tables 1-10. 

Clearly AR (2) has the minimum AICC. 

 

ARMA ARIMA 

 
 

 
 

Figure 1 (a–b). SS(2976)1749 to 1996 

 

Figure 2 (a–b). SS(432)1961.1 to 1996 
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Figure 3 (a–b). SS (m-m) 1964-1976 

  
Figure 4 (a–b). SS (m-m) 1976-1986 

  
Figure 5 (a–b). SS (m-m) 1986-1996 

  
Figure 6 (a–b). SS (M-m) 1968-1976 
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Figure 7 (a–b). SS (M-m) 1979-1986 

  
Figure 8 (a–b). SS (M-m) 1989-1996 

 

 

ARMA ACF/PACF Plot ARIMA ACF/PACF Plot 

 
Figure 9 (a–b). SS(2976)1749 to 1996 

 

 

 

 

  
Figure 10 (a–b). SS (m-m)1976-1986 

  
Figure 11(a–b). SS (m-m)1986-1996 
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Figure 12 (a–b). SS (M-m) 1968-1976 

  

Figure 13 (a–b). SS (M-m)1979-1986 

  
Figure 14 (a–b). SS (M-m)1989-1996 

 

 Value can be considered as the most appropriate model if compared among the other models under ARMA. Various 

classes of time series models, namely ARIMA naiva, Holt's linear and so on are used to forecast the time series.  

 

In the first step we have forecasted the 11-years (1997.1-2007.12) SS datasets. The SS data is first forecasted with the 

help of actual data from 1749.1 to 1996.12. In the second step we have forecasted the (m-m) cycles (20-23) and (M-m) 

cycles (21-24) SS datasets falling in the duration (1961.1- 2007.12). We have used the total actual values of a previous 

cycle to forecast the first twelve months values of the next cycle. Details of ARMA and ARIMA most adequate models, 

model equations and AICC values are provided in Tables 1-7(a-b) and Figs. 1-7 (a-b). ARMA and ARIMA forecasted 

versus actual correlation coefficients and the respective p-values are given Tables 1-7(a-b) depict the trends, ARMA and 

ARIMA models, respective ACF, PACF values and associated graphs 4(a-b)-7(a-b). In case of ARMA model the forecasted 

values for SS-11 years (1997-2007) obtained with the help of (1749-1997) dataset have a good correlation with the 

corresponding actual values. However, the ARIMA model is less significant than the ARMA model. ARMA and ARIMA, 

CCs appear to be 0.706 and 0.422 respectively. The situation improves in case the forecasts are made with the help of (1961-

1997) dataset. ARMA and ARIMA CCs appear to be 0.895 and 0.530 respectively. 

 

 

Table: 1(a). SS Time Series ARMA (1749 to 1996) 

ARMA 
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Estimated Model Equations AICC 
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Table: 2(a). SS(m-m) Time Series ARMA (1964 to 1976) 
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Table: 3(a). SS(m-m) Time Series ARMA (1976 to 1986) 
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Table: 4(a). SS(m-m) Time Series ARMA (1986 to 1996) 
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Table: 5(a). SS(M-m) Time Series ARMA (1968 to 1976) 
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Table: 6(a). SS(M-m) Time Series ARMA (1979 to 1986) 
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Table: 7(a). SS(M-m) Time Series ARMA (1989 to 1996) 
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Table: 1(b). SS Time Series ARIMA (1749 to 1996) 

ARIMA 

Models 

Estimated Model Equations AICC 
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Table: 2(b). SS(m-m) Time Series ARIMA (1964 to 1976) 
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Table: 3(b). SS(m-m) Time Series ARIMA (1976 to 1986) 

 

(3,1,10) 

693)WN(445.827~}{Z where

   0.2915Z 0.08540Z  0.1540Z -     

0.1282Z 0.1232Z - 0.05872Z - 0.2393Z - 0.04079Z 

 0.1129Z 0.05748Z  Z0.4297X -0.3755X -0.3870X - X

t

10-t9-t8-t

7-t6-t5-t4-t3-t

2-t1-tt3-t2-t1-tt

++

++

+++=

 

 

1133.233089 

 

Table: 4(b). SS(m-m) Time Series ARIMA (1986 to 1996) 

 

(2,1,12) 

378)WN(398.254~}{Z where

   .2128Z 0 0.1135Z  0.03586Z - 

0.1778Z -0.04793Z 0.2612Z 0.1115Z  0.06152Z -0.1241Z -      

0.2817Z - 0.002742Z 0.2606Z  Z0.3354X - 0.7081X -  X

t

12-t11-t10-t

9-t8-t7-t6-t5-t4-t

3-t2-t1-tt2-t1-tt

++

+++

+++=

 

 

1060.168811 

 



Performance of AICC Statistic as Time Series Modeling and Forecasting of Sunspots 

Copyright © 2022 IJAIMS    International Journal of Artificial Intelligence and Mathematical Sciences, Volume 01, Issue 02 

23  

Table: 5(b). SS(M-m) Time Series ARIMA (1968 to 1976) 

 

(2,1,20) 

113.989146 ~ Variance WN

   0.5600Z -0.5597Z 0.5124Z - Z0.2655 0.6929Z -

0.5420Z  Z0.4663 -0.7846Z 0.0006798Z 0.1113Z -

0.1537Z  Z0.09833 -0.2944Z -0.5029Z 0.7542Z - 0.5334Z 

0.5177Z -0.2395Z 0.4880Z - 0.1038Z Z0.2116X -0.3040X - X

20-t19-t18-t17-t16-t

15-t14-t13-t12-t11-t

10-t9-t8-t7-t6-t5-t

4-t3-t2-t1-tt2-t1-tt

++

+++

+++

+++=

 

 

891.076666 

 

 

 

Table: 6(b). SS(M-m) Time Series ARIMA (1979 to 1986) 

 

(9,1,10) 

102)WN(467.754~}{Z where

    Z0.0002028   Z0.09015 -        

0.06297Z - Z0.3053 -  Z0.2324 - Z0.05220  Z0.01459 - 0.2085Z -        

0.4724Z  Z0.5705  ZXX 0.1863 0.3221X -0.05187X

0.3769X -0.6211X-0.5136X -0.3828X -X 0.4830 -0.4622X - X

t

10-t9-t

-8t7-t6-t5-t4-t3-t

2-t1-tt9-t-8t7-t

6-t5-t4-t3-t2-t1-tt

+

+

+++++

=

 

 

789.219133 

 

Table: 7(b). SS(M-m) Time Series ARIMA (1989 to 1996) 

 

(5,1,12) 

550)WN(576.017~}{Z    where

    Z0.2194 -0.2341Z 0.1978Z -0.2503Z  0.03393Z -0.2310Z  

0.4142Z -0.04320Z 0.1517Z -0.06392Z -0.3132Z 0.07377Z 

 ZX 0.06488 0.4053X -0.2652X -0.6864X -0.4489X - X

t

12-t11-t10-t9-t8-t7-t

6-t5-t1-t3-t2-t1-t

t5-t4-t3-t2-t1-tt

+++

+++

++=

 

 

865.770969 

 

 

Table 8: CC of 11 years Forecasts vs. Actual Datasets 

Range  of Forecasts ARMA ARIMA 

CC P-Value CC P-Value 

SS 11 years (1997.1-2007.12) forecasts 

using (1749.1-1997.12) dataset 

0.706 0.000 0.422 0.000 

SS 11 years (1997.1-2007.12) forecasts 

using SS (1961.1-1997.12) 

0.895 0.000 0.530 0.000 

 
Table 9: CC of Forecasted vs. Actual Datasets (m-m) SS 

Range  of Forecasts ARMA ARIMA 

CC P-Value CC P-Value 

SS cycle 21, 12 months forecasts for 

1976.6-1977.5 using all actual values of 

cycle 20 (1964.9-1976.5) 

-0.170 0.597 -0.040 0.903 

SS cycle 22, 12 months forecasts for 

1986.9-1987.8 using all actual values of 

cycle 21 (1976.5-1986.8) 

-0.439 0.153 -0.554 0.062 

SS cycle 23, 12 months forecasts for 

1996.5-1997.4 using all actual values of 

cycle 22 

(1986.8-1996.4) 

0.198 0.537 -0.238 0.456 

  
Table 10: CC of Forecasted vs. Actual Datasets (M-m) SS 
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Range  of Forecasts ARMA ARIMA 

CC P-Value CC P-Value 

SS cycle 22, 12 months forecasts for 

1976.8-1977.7 using all actual values of 

cycle 21 (1968.5-1976.7) 

0.272 0.393 0.547 0.066 

SS cycle 23, 12 months forecasts for 

1986.7-1987.6  using all actual values of 

cycle 22 (1979.9-1986.6) 

0.253 0.428 -0.621 0.031 

SS cycle 24, 12 months forecasts for 

1996.11-1997.10 using all actual values 

of cycle 23 (1989.6-1996.10) 

0.568 0.054 -0.519 0.084 

 

Details are depicted in Tables 1-10. The spectral estimation using wavelets (Cowan 2007) also confirms the above 

results. The associated period grams are depicted in the above figure. Maximum values of the means follow these cyclicities 

with slight differences.   

 

 

4. Conclusion 

As already discussed the (m-m), and (M-m) cycles have significant correlations. SS cycle 21 (first 12 months) ARMA 

and ARIMA CCs for forecasted versus actual values appear to be -0.170 and -0.040 respectively. ARMA and ARIMA 

forecasts are not significantly correlated with the actual values. SS cycle 22 (first 12 months) ARMA and ARIMA CCs for 

forecasted versus actual values appear to be -0.439 and -0.554 respectively. ARIMA forecasts are significantly correlated 

with the actual values whereas the ARMA forecasts are poorly correlated with the actual values. SS cycle 23 (first12 

months) ARMA and ARIMA CCs for forecasted versus actual values appear to be 0.198 and -0.238 respectively. Both the 

ARMA and ARIMA forecasts are not significantly correlated with the actual values. Details are depicted in Table 8. 

 

SS cycle 22 (first 12 months) ARMA and ARIMA CCs for forecasted versus actual values appear to be 0.272 and 0.547 

respectively. ARIMA forecasts are significantly correlated with the actual values whereas the ARMA forecasts are poorly 

correlated with the actual values. SS cycle 23 (first 12 months) ARMA and ARIMA CCs for forecasted versus actual values 

appear to be 0.253 and -0.621 respectively. ARIMA forecasts are significantly correlated with the actual values whereas 

the ARMA forecasts are poorly Correlated with the actual values. SS cycle 24 (first 12 months) ARMA and ARIMA CCs 

for forecasted versus actual values appear to be 0.568 and -0.519 respectively. Both the ARMA and ARIMA forecasts are 

significantly correlated with the actual values. Details are depicted in Tables 1-7 (a-b). 
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